Sock API

Provides a network API for applications and library. More...

Detailed Description

Provides a network API for applications and library.


| Application |
| Network Stack |

This module provides a set of functions to establish connections or send and receive datagrams using different types of protocols. Together, they serve as an API that allows an application or library to connect to a network.

It was designed with the following priorities in mind

  1. No need for dynamic memory allocation
  2. User friendliness
  3. Simplicity
  4. Efficiency (at both front- and backend)
  5. Portability

Currently the following sock types are defined:

Note that there might be no relation between the different sock types. So casting e.g. sock_ip_t to sock_udp_t might not be as straight forward, as you think depending on the networking architecture.

How To Use

A RIOT application uses the functions provided by one or more of the sock type headers (for example sock_udp_t), regardless of the network stack it uses. The network stack used under the bonnet is specified by including the appropriate module (for example USEMODULE += gnrc_sock_udp for GNRC's version of this API).

This allows for network stack agnostic code on the application layer. The application code to establish a connection is always the same, allowing the network stack underneath to be switched simply by changing the USEMODULE definitions in the application's Makefile.

The actual code very much depends on the used sock type. Please refer to their documentation for specific examples.

Implementor Notes

Type definition

For simplicity and modularity this API doesn't put any restriction on the actual implementation of the type. For example, one implementation might choose to have all sock types having a common base class or use the raw IP sock type to send e.g. UDP packets, while others will keep them completely separate from each other.

Alexander Aring
Simon Brummer simon.nosp@m..bru.nosp@m.mmer@.nosp@m.haw-.nosp@m.hambu.nosp@m.rg.d.nosp@m.e
Cenk Gündoğan
Peter Kietzmann
Martine Lenders
Kaspar Schleiser


 DNS sock API
 Sock DNS client.
 DTLS sock API
 Sock submodule for DTLS.
 Raw IPv4/IPv6 sock API
 Sock submodule for raw IPv4/IPv6.
 TCP sock API
 Sock submodule for TCP.
 UDP sock API
 Sock submodule for UDP.
 sock utility functions
 sock utility function


file  sock.h
 Common sock API definitions.

Data Structures

struct  sock_ip_ep_t
 Abstract IP end point and end point for a raw IP sock object. More...
struct  _sock_tl_ep
 Common IP-based transport layer end point. More...


#define SOCK_ADDR_ANY_NETIF   (0)
 Special netif ID for "any interface". More...
#define SOCK_IPV4_EP_ANY
 Address to bind to any IPv4 address. More...
#define SOCK_IPV6_EP_ANY
 Address to bind to any IPv6 address. More...
 Special value meaning "wait forever" (don't timeout)

Compile flags

Flags to (de)activate certain functionalities

#define SOCK_HAS_IPV6
 activate IPv6 support

Sock flags

Common flags for Sock API

#define SOCK_FLAGS_REUSE_EP   (0x0001)
 allow to reuse end point on bind

Macro Definition Documentation


#define SOCK_ADDR_ANY_NETIF   (0)

Special netif ID for "any interface".

Use an equivalent defintion from PR #5511

Definition at line 135 of file sock.h.


#define SOCK_IPV4_EP_ANY
{ .family = AF_INET, \
Special netif ID for "any interface".
Definition: sock.h:135
internetwork address family: UDP, TCP, etc.
Definition: af.h:36

Address to bind to any IPv4 address.

Definition at line 140 of file sock.h.


#define SOCK_IPV6_EP_ANY
{ .family = AF_INET6, \
internetwork address family with IPv6: UDP, TCP, etc.
Definition: af.h:38
Special netif ID for "any interface".
Definition: sock.h:135

Address to bind to any IPv6 address.

Definition at line 147 of file sock.h.